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The property of Boltzmann's kinetic equation in the presence of Euclidean 
transformations such as non-stationary rotations and translations of the 
frame of reference is discussed. It is shown that in the transition 
from an inertial frame to a rotating frame , in Boltzmann's equation 
additional intertial tenrs appear, an d in the transition from non-inertial 
to non-inertial, the equation is invariant under the above transitions. 
The algorithms, and the results of an approximate method for solving 
the equation, of the Chapman-Enskog method in particular, are also 
invariant. The additional terms appear, specifically, in the expressions 
for stresses and the heat fluxes in Barnett's approximation, and in this 
sense these expressions are frame-dependent. Because of the condition 
that Knudsen's numbers should be small, this limits the domain of 
applicability of one of the basic postulates of the axiomatic theory of 
continuous media, namely the principle of material frame-indifference 
(or the principle of material objectivity), in accordance with which the 
constitutive (determining) relations should be invariant under continuous 
changes of the frame of reference. The existing papers on this subject 
are critically analysed. 

For more than ten years a discussion /I-T/has been going on as a consequence of the well- 
known fact that the formulae for the stresses P<j and heat fluxes g1 in Barnett's approximation 
contain, as cofactors, the components of the spin tensor 

a,$,,. = I'* j&+%,, - aU,;.'&R) 

and consequently these formulae are invariant under a Euclidean type cf transfcrmation (see 
1811. In other words, in the expressions for P,~ and gl. when passing from an inertiai to a 
non-inertial frame, additional terms appear, i.e. the consequence of the frame being non- 
inertial will not be merely the appearance of 'Eulerian' inertia forces in the equation of 
momentum. 

Hence, it was initially concluded in /l--3/that the principle of material frame-indifference 
was limited (see 9, lo/). The invariant terms in Pzi and qt were indicated in /2/. The 
properties of the Maxwell transfer eqzaticr, for Pij and q*. and the iteration method fox their 
solution in a non-inertial frame of reference were studied; it was remarked that the non- 
invariance in the sense mentioned abcve is due to the action of microscopic Coriolis forces. 
The action of the latter was studied in more detail in i3/. Some inaccuracies allowed in /i, 
2,' were corrected in /5/ (see Sect.6 below!. 

Subsequently, the question of applying the conclusions which follow from kinetic theory 
tc the principle of material frame-indifference /4 -6/,and the properties of Boltzmann's 
equation in the presence of the Euclidean transformations were studied /4/. An incorrect 
deduction that the sclutions of Boltzmann's equations satisfy the principle was made: this 
even led to the conclusion that the higher approximations, starting with Barnett's, of the 
Chapman-Enskog and Maxwell methods for solving Boltzmann's equation are incorrect as the 
Knudsen number Kn-0 /6/. 

Barnett's approxlzati on for P,j and 9. was again considered in /7/ and it was suggested 
that the principle of material frame-,., ;-difference should be generalized (see Sect.7 belowi. 

The fo.mdatior,s of the mechanics of ccntinuous media, and their connection with the 
kinetic theory are of great impCrtanCe, /ll/. Papers /l-T/are concerned precisely with 

discussions on these subjects. However, a sufficiently full treatment of the qeustions was 

not given, and some conclusions were false to varying degrees (especially in /b/j. This was 
due to confusion in the definitions. 

The aim of the present paper is to analyse successively the questions formulated in /l--7/'. 
The properties of Boltzmann's equation in the presence of Euclidean transformations, then of 
the algoritim of the Chapman-Enskog method, and the stresses in the heat flux in the Barnett 

approximation are studied. As a result, it is concluded that there are no contradictions 
between the properties of the equation and its approximate SolUtiUnS. some examples and 
the domain of applicability of the principle of material frame-indifference are discussed. 
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1. Let us introduce some definitions and notation /I, lo/. Avector, itscomponentsandthe 
column-matrix of the latter are denoted by the same lower-case letters (for example, x, Z~,Z), 
and the similar quantities for the second-rank tensor are denoted by the same upper-case 
letters (for example, P, P,,, P), with i, j = I, 2, 3. Summation is carried out with respect 
to the repeating indices, and the matrix formulae for transforming vectors and tensors are 
used when the frame of reference is changed. 

Let 2, Z*, X" be orthonormalized Cartesian frames of reference, only Z being inertial. 
The coordinates in these frames are connected by the transformations 

t* = R' (t)r + b* (t), z” = R’ (t) z +- b’ (t) (1.1) 

t* = t + a* , t"=t+d" 

The matrices R*and R'which describe the rotation are orthogonal (RR? = RTR= I, where 
I is the unit matrix). For brevity, we set hi(t)= 0,d = 0, since the frame-dependence of 

Pff and piis due to its unsteady rotation /l-7/, and the conclusions reached below 
depend on this assumption. 

The coordinates of the Z'- and X*-systems are connected by the relations 

2" = Qz*, Q = R*R*T 

The matrices of the angular velocities of the coordinate axes of these systems 
to I: are 

(the dot means differentiation with respect to time t). 
By (1.11, for the velocities of the molecules f = x'. E* = x*', c = x0' we have 

E* = R*i - R+‘3., E’ = QE’ - Q’s’ 

do not 

(1.2) 

relatively 

(1.3) 

(1.4) 

Prom (l.l)-(1.4: we have the following expressions for the accelerations cf the molecules: 

Here F = F (x. i) is the external fcrce referred to the mass of a molecuie m, and the 
remaining terms correspond tc the Coriolis rotational and centripetal accelerations. 

Following /l, 6, 7/, we describe the n-rank tensor with components (lili2 ,,,, as frame- 

indifferent if for (1.1) we have UT, >,, = RE,: R~2i,p,a,, .,,, for example, for a franc-indifferent 

second-rank tensor A* = R*.-fR*T for a vector, U.* = R*u.. or fcr a scalar a* (s*. 1) = a (s. 1). 
as shown in /4. 6/, the veiocit)' distribLticr. fcnction of the mclec,dles / = i CF. x, 1). 

the eiemer,: of velocity space di. anZ, therefcre, the gas density p are 
scaiars. Sir.02 

by virtue cf (1.4) the macroscopic velccity u is net a frame-indifferent 

u* = R*u _ R*'= uC = Qu" _ .'I* 
*V 

frame:izdlfferent 

vectcr, beta,lse 

(i.E! 

The tenser v with components I'i, = du,‘dxj, alsc is not frame-indlfferent sir.ce, by (1.61, 

(' 3' i. ,, we have 

1. = R*' (13 _ T+'*) R' = R'T (1‘: _ TfF)R: 
(1.7. 

At the same time, a tenser with ccrr.;;onents which are derivatives cf l‘ij wit?. respect to 
xk is frame-indifferent. 

We emphasize that for the tensor y* -\v*, from(l.7) we have 

IV* _ I{-* = Qr (I-- - i{'O)Q (1.81 

By (1.4) and (l.Oj, the vector of the molecule's own velocity c=F-u(c*= R*c.c” = Qc*) 
is frame-indifferent. Therefcre, the central moments of the distribution function 

.II"" = m ,c c'"'f dE I (c'")] (1.9) 

and the derivatives with respect to their coordinates, in particular the stress tensor P with 
the components Pi, = [cicj - ‘:‘aSijC’l, the pressure p = '/*[ $1. and the heat flux q = 1/2 [cc*J, are 
frame-indifferent as well. 

2. The fact that the frame-indifference of P and e fellows from the kinetic theory led 
Spezialle /6/ to a false conclusion: the presence of the terms with factors Rkm in Barnett's 
stresses IJ,~(*) and the heat fl.zes qi") are allegedly a consequence of the inaccuracy of the 
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approximate methods in kinetic theory, in particular, of the Chapman-Enskog method. However, 
generally speaking, it does not follow from the frame-indifference of the tensors that the 
formulae which express these tensors by others are invariant under the transformations (1.1) 
(the scaling rules for the frame-indifferent quantities, and not the dependence of these 
quantities on the space derivatives of macroparameters are frame-independent). The requirement 
of such an invariance is an additional postulate of the material frame-indifference principle 
/9, lo/. Below we show that the violation of this principle in P,j'*'*9i") is a consequence of 
the corresponding properties of Boltsmann's equation. 

The false conclusion made in /6/ is connected also with the faulty interpretatian of the 
findings in /4/. 

3. The findings cf /4/ consist of the following. Boltsmann's equation in an inertiai 
C-system has the form 

The quantity F was assumed /4/tobean arbitraryfunctionof 5. However, then the third 
term on the left in Eq.13.1) should be expressed /U/in the form a(Ej'j),di,. 

The collision integral J(f) is invariant under the Euclidean group of transformations, 
/4/. In fact, it equals the difference between the "increase" and "decrease" of the number 
of molecules in the element of phase volume which is invariant under the transformations !l.li, 
the difference being caused by the instantaneous "point" collisions cf molecules. Thisprcperty 
is particularly evident for models of the collision integral of the relaxation type, 

In a non-inertial If*-system, Eq.(3.1), taking (1.1) and (1.4! intc account, can be re- 
duced tc the for- . . 

Tne q'uantity &*' is given by :1.5!. In a I: -system we obtain the same equation by 
replacing the asterisks by degrees: Thl;s, Boitzmann's equaticn maintains its form, and in 
tinis sense it is invariant under the Euclidean transformations 141. Cleiirly, in the Same Sense 
the equation cf momentum, which is obtained by multiplying Eqs.i3.2: by mF,* and integrating 
over the whoie velocity space, 

As is well Ykncwn, the additional zcn-inertia; tenr. ir. :;.A, “vamshes” becacsg of the 
anti-sym..etry c: W. In a I-syster., we may drop the asterisks and ass*;me \Vli S5S 0. 

This prc.;ert)- cf ir,-arfance cf Boitzmanr,'sequaticnled Wang 14, to ti.e ccn;lusicr. ~.?a: 
material fraze-icdlfference hclds ir. kinetic theorj.‘. Eo*tever, this grir‘ciple does net fc:lGw 

from the in\,arianse ci the eqLatior, cf momentu:. in the form !3.3. (ncr, generally $peE&i2;, 
from Kewtcn'S seccnd l;v on introducing the ccrresponding acceleration field /9/!. Still less 
is the principle Satisfied in kinetic theory. Before proving the above, we shall pay attezticr. 
to the fCllGWir;C. If F, ES 0. then ~;*ss 0, and in passing from a z- tc a 

(briefly, fcr i -+ 

Z*-systerr, 
Z*) additional terms appear in Bcltzmann's equation since is*'+ 0. Hohever, 

for Z*-+ Cc this terz is invariant. The equation of momentum has the Same properties as 
well. 

Precisely these properties are characteristic for the central moments of the distrib,zion 
function (1.911, in partlcclar P and q ever. with F f 0. 

4. Since the central moments of the distribution function are integrals with weights 
which are the products of the intrinsic velocity of the molecules e =t--u. we pass in (3.1) 
from the variables g. x, f to c,s and t. By what was said above regarding its properties, 
the collision integral is invariant under such a transfcrmation (see /8/j. On performing 

certain operations /ai, and using t:?e equation of moment*% (3.3) in a L-system, we obtain 

the following Boltzmann equatir. fcr j = f (CT x. t): 
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(4.1) 

We must stress that the terms with F, have been cancelled, and it is out of the question 
to speak here about the invariance discussed in Sect.3. 

The source of the inertial terms in (1.4) are Vlf by virtue of (1.7), and nfm E aj af + 
u,af atj ; the remaining terms are invariant under the transformations (1.1). By the formulae 
in Sect.1, we obtain 

Dt D*j* -- 
Dt- Df 

+ wij*c.*z_ 
1 act* 

Therefore Eq.(4.1) in a x*-system takes the form 

D*j* at* I aTi,* aI* _I,i*m’_-_ 
DI p+ azj* aclr -(‘* - 2W*)ijcj 

* al+ =J’(j’) 
1 aci* 

The appearance of the term 2Uri,*cj*df*:dci* is physically due to the microscopic Coriolis 
forces which are not eleiminated by using a macroscopic equation of momentum. 

Thus, as Z+ r* additional inertial terms appear in Boltsmann's equation, and as 2*-c Z" 
this equation is invariant: in the X0-system, we obtain Eq.(4.2) by replacing the asterisks 
by degrees. 

Let us multiply Eq.(4.1) by mc&,, and integrate it with respect to c. For Maxwellian 
molecules, when the viscosity p is proportional to T the integration of a collision operator 
is carried out in explicit form, and as a result we obtain a system of equations for Pkm (the 
system is open because derivatives of third-order moments occur in the equations). Of course, 
it is important that there are no terms with outside forces. However, the equations for Pkm* 
similarly obtained from (4.23 will contain inertial terms. Strange though it may seem, this 
property of the equations for the stresses led Spezialle /6/ to a "final" conclusion regarding 
the incorrectness of the Chapman-Er,skog and Maxwell methods. 

Clearly, the same results are obtained in integrating Eqs.(3.1) and (3.2) with weights: 
the integral of the third term on the left of (3.1) is zero unlike the corresponding integral 
in (3.2). It is this "asymmetry"in integrating Boltzmann's equation that explains the above 
properties of the central moments of the distribution function. 

The established properties are fcund in the results of asymptotic methods (Kn+O) for 
solving Boltzmann's equation as well. Let us consider the Chapman-Enskog method, which is 
most criticized in /6/. The aim of this method is to obtain an expansion for the soluticn 
of Bcltzmann's equation, in the form of series 

where j!OJ is the local Maxwellian function. The q>uan+i+ies c_ j'") are functions of the intrinsic 
velocities c; this is a general property of the asym?r.ptct ic expansicns of this equation that 
are external (with respect tc Kn.2&en's layers . The series 

which close the equaticn cf conservation are computed from the known j@J. The essence cf the 
Chapman-Enskog method consists Frecisely in obtaining such series; the question of how many 
terms should be considered is sclved separately for each type of flow depending on the accuracy 
required. On ccnsidering P,jt~‘.q,‘J, we obtarn the Navier-Stokes andFourierequations, and P .(zi, 11 
q,‘?’ yield the Barnett eq'iation. 

Using Eq.(4.1), the general algorithm of the Chapman-Enskog method can be written in the 
form 

(4.3) 

This expression is an equation for fW-11 ; (6J)W is understood as the corresponding result 
of expanding the collision integral in series in Kn. the quantity I (f) being a collision 
integral linearized with resp_ect to f(O'. The appearance of the operators D,Dt is a con- 
sequence of the exclusion, employed in the method, of the time derivatives with respect to 
macroquantities, using the equations cf conservation (3.3) and (3.4) in a X-system. The 
action of these operators on the macroquantities is given by the formulae 

D@ _=--_ru, ++$(F--vp). DOT 2r 
Df Dt=-- 3 vu (4.4) 
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D,,.,~P D 
T=o. +i__ 

f dP!“‘) 
--+, 
P =, 

We note that in almost all handbooks which treat the Chapman-Enskog method, the elimina- 
tion of the partial and not of the total derivatives of the macroquantities with respect to t 
is considered: in the stationary case this may lead to misunderstandings. 

Finally, f”‘), n > 1 , is the sum of the quantities with the coefficient-functions e. which 
contain the products of tensors of different ranks, formed from the space derivatives with 
respect to ui,T and p, the derivatives being of different orders. The tensors constructed 
from the derivatives with respect to frame-indifferent scalars T,p and Vu are frame- 
indifferent as well. The components of the velcoity ui do not appear in explicit form, 
but only their derivatives, i.e. the components of the non-frame-indifferent tensor V. 

Not only the terms of Eq.(4.3) which contain l-ij, but also the operators (4.4) (and not 
only D,,ui’Dt as stated in /6/J are the source of inertial terms. In fact, for example by 
(4.4) we have 

Do aT 
--=&(-+")-V,+ ~v,,=~$(F--~p)i--~,;jl',,, Dt or, , I 

where the first terms are frame-indifferent. 
Consequently, as 2-t P* in (4.3), only those terms which include the components of 

tensor \', undergoing the transformation in accordance with rule (1.7) will be invariant. For 
the 8*-system in (4.3: we mdst add an asterisk everywhere at the top, and write Vij* - M',j* 
instead of T‘ij; because of this there appear, generally speaking, terms with a factor ii',,*, 
which are frame-dependent. The resulting equation is invariant under r*+ 2" by virtue cf 
Eq.(l.B), and l'jj* - W,,* is replaced by JTi,C - II' : 1, 

Thus, the general algorithm o f the Chapman-Enskog method is non-invariant under r-z* 
and invariant under I*-+ ‘c“. , that is the initial properties of Boltzmann's equation are 
maintained in the E;iclidea:. transformations. In the Maxwell method, the expansion of the 
central moments of the distribution function in series in Kn is performed by the same 
procedures as in that of Chapman-Enskog. The Grad method is an extension of the latter to 
the case of arbitrar>T intermolecular forces. It can be similarly shown that the algorithms 
of these methods have the same properties during the Euclidean transformations. Finally, a 
segment cf Hilbert's series for j can be obtained from the corresponding series in the 
Chapman-Enskog method by re-expanding u,. 7' and p which the method contains, in series in Kn. 

5. To a firs: approximaticc cf the Chapman-Enskog method for P,, and qi we obtain the 
well-known expresslsns cf Navier-Stokes and Fcurier which satisfy the principle of materlsl 
frame-indifference. 

Let us examine :r. more detail the Burnett apprcximation (precisely this approximation 
was the subject of discassiono in il, 2, 5-y;':. The expressions fcr the terms, additicnal 
to those cf Navier-Stokes, fcr the stress tensor components have the fcllowing fcrm in the 
initial fra-e cf reference :see *12/,; : 

In the general case, the coefficient li,. a = 1. 2. . ..( 6. depends on temperature P; here 
p is the viscosit Y. 

Let us perfcrz the transfcrrr.ati0r.s X+X* and Z*dZ', then, using Eq.(4.2:, calculate 

directly p$" in the Z?*-system and compare the expressions obtained. 
From a?orjg the tensors in (j.1; only V is non-frame indifferent (the quantity I'** and 

the tensor (Y) are frame-indifferent!. Let us pass to the I*-system. In matrix notaticn 

we have 
-02 {<W> - 2 <(lW>lV)} = --O** ((R*'V*l'*R*) + 

(R*rM'*Ii‘*R*> - (R*rF*U'*R*) - <R*rW*l'*R*) + 

2 (R*r (l.*)L’*R*) - 2 (R*T(rv*) I!‘*R*)) 

Taking into accOunt the equalities 

2(<\7')M'*) = <l'*U'*) - (u*r'*). Wij* = _Wjif 

we finally cbtair. 
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pw =I r* + a%+~, B = 2 (w*c+) -(W*W*> + 4 <<V*) x W*> 

witi p*(Z) e R*JWR*T, 

(5.2) 

Here r* denotes the right side of Eq.(s.l) with an asterisk at each variable. 
In passing from X,* to Z", from the group of terms F* in pDttl= Q~*(z~QT inertial 

terms analogous to o~*B are added, and a*, V*, W* is replaced by wz", v, QQT, that is 

o*O {2<Q'Q7T;1)) - <O'QTO'QT> -I- 4<<V")o'Q?} (5.3) 

Let uatransformthe terms in the expression for B in (5.2), using the equation v* = 

Q'VQ-QTQ and formula J1.3) for u'-. Taking into account <Q'QW=> = <W'g'Q*>,(QQT)' = 0 
we obtain 

02"QBQr = ozoQ {2((QVVQ - Qro'). (5.4) 

(Q7icQ - Q74'D - <(Q'W=Q - Q'QYQTJ+=Q - QrQ'D + 
4 <Or <r>Q (QTif‘CQ - QVD) QT = 
co20 (2 (WV) - (WOW) + 4 <(PO) WC)- 
2 <O'Q*i=> i- <O'Q*Q+Q*> - 4<<0 Q'Q?} 

Adding expressions (5.31 and (5.41 we see that the additional inertial terms are cancelled 
out, and PO! takes the form (5.2) when the asterisks are replaced by degrees. 

we shall obtain relation (5.2) directly from Boltzmann's equation in the P.-system (4.21, 
The formal difference from the inertial case is that, firstly,in excluding Do*u,*iDf on 
account of (3.3) we must substitute F,* instead of Fi, and secondly it is necessary to take 
into account the additional term 2ii‘ij*c,*c7Fdr,*. Like (5.1), we find that the contribution 
of the first factor is w‘* <F,*),j. Hence follows the additional term of pw 

a** (2 Oi’*I’*) - (H” ii’*)) 

To take into account the second factor it is sufficient to recognize to which terms of 
P*c; the last term on the left in (4.1) contributes, Analysing the derivation of ?'I') in /S/ 
we can see that the consequence of this term is the appearance in formula (5.1) of the last 
term in curly brackets for or. and the last term with factor og. Replacing I'{, by Vi/* - 211'1,* 
in these terms and taking into account the equation (8'*> = O.we find one more additional term: 

0**4 ((1'*) I~'*) = - 2~~" f(r’~j) W~j -i (V;) Eli} 

The above expression is written in this form in /l/ with K2 = 2 for Maxwellian molecules, 
Sunzing the res.ults we again obtain fcrm-la (5.2). 
T'ne same res.Jlts are fo'und for q,!?‘. In a x*-system we obtain 

g V&P, -- + g(T*l'& - e,* (r’,,*>,j - 15.5: 

where Be. are analogous to ri,. Only the last term sihose transformations are particularly 
obvious is frame-dependent. 

Thils, as in Bcltzmann's equation \4.1:, as .X + X* there appear addiricnalinertial termsir, the 
expressions for the frame indifferent tensor PC?; andinthe vector qc*',and as Z+-+T' the 
expressions for Pi and qc*) are invariant. 

The flows connected with these terms transport the energy and entropy withoiit transferring 
the mass. However their contribution to the generation of entropy is zerc, /13/. Tneir 
appearance is motivated by the fact that *he Coriclis fcrce acting on the mclecules is not equal 
to the Coriolis "macrcfarce" which affects the macrovclume of the gas. Since this force is 
perpendicular to the velccity and does net prodzce tho work, it does not give rise to energy 
or entropy. 

6. The problem of the rctation of a gas 
discussed in /l-j/. 

as a rigid body in the Barnett approximation was 
It was maintained in f2; that if in an inertial fran,e of reference B 

an isothermal gas is at rest, then in the non-inertial P-system the Barnett stresses are 
non-zero. However, this assertion is false: on substituting into (3.3) and (5.2) u*=lI'*z*, 

T* = const we have p*= const.P:;") = 0. Similariy, ;Ising the equation of momentum to determine the 
derivatives of the pressure it can be proved that the Barnett stresses in an isothermal gas 
which rotates as a rigid body are zerc in any Euclidean frame of reference, contrary to the 
assertions in /2/i this is a consequence of the fact that for the motion discussed, Boltsmann's 
equation has an exact SC:.. 
can be obtained for q:?'. 

,*tion which is a locally Maxwellian function of c= /12/. The same 

It was emphasized in /5/ that the source of errors in /2/ discussed is the result of 
ignoring the obvious situation: PC”’ and g'2' should be computed regarding the solution of 
a given problem, and not arbitrarily. In this connection, an analysis was givenin/S/,whichwas 
more careful than that in /l/, of the sciutions of Barnett's equation for a gas rotating as a 
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rigid body at a temperature alternating 
interesting in that the existence of an 
formula (5.5). 

with respect to the radius-vector. Such a motion is 
azimuthal heat flux follows from the last term of 

7. Thus, we have established that there are no internal contradictions between the 
initial equations and their approximate Euclidean transformations in kinetic theory. However, 
as was stressed in /4, 5/ it is still necessary to prove that the exact solutions of Boltsmann's 
equations for a real gas flow can be frame dependent. In other words, it is necessary to 
prove the impossibility of a situation where the non-invariant terms of P and IJ vanish in 
the solution of the kinetic equation. Let us assume that in general this situation is imposs- 
ible, and consider the question of the limits of applicability of the principle of material 
frame-indifference. 

First, we shall clarify this principle using a well-known example, see /9/. Let P= 
@(v, p, CT’, J, t) where @is a function of five arguments. Because P is frame-indifferent we 
have @* = R*@R*r on (l.l), and the principle in question still requires that CD (Ii*. p*. .r*.. 
.7*. 1*) = R'Q, (I.. p. 5'. I, f) R*r. Further analysis shows that @ can depend only on the matrix 
of velocity deformation D = 12'(1v- F) and does not depend on R = 1,'2 (1' - !'r), that is CD= 
Q(D) (see /9/J. In other words, in conformity with the principle of material frame-in- 
difference in a I*-system the arguments of the function Q, simply "acquire" asterisks, and 
no additional arguments appear. 

However, the kinetic theory provides examples where the function @ depends on R, and 
therefore on the frame of reference, i.e. the above invariance does not occur, andtheprinciple 
of frame-indifference has a limited applicability in the case of the motion of a gas. In this 
ccnnection Murdoch /7/ prcposed to widen the applicability of the principle by introducin; 
~,~~~a~~i~~v~~*=~eflne~ in (1.31. Then the constitutive relation will depend on <1- It'*. and 
: 7 . yi_.t ilzfier E.2clidean transformations. In inertial frames of reference II.* "dis- 
appears". In this sense, the results of the Chapman-Enskog method vi11 be invariant as well. 

Hoi;ever, in s-ch a generalization the domain of applicability of the principle of frame 
indifference is limited tc the case of small Knudsen numbers Kn< 1. when the asymptotic me+&od 
for sclving Bcltzmann's equaticn makes it possible tc close the equation of conservation and 
thereby tc pass tc a macrcsccp:c, and not to a kinetic description of the flow. 

For all knoi;;. types cf flo.6, the no:-invariant terms in the expressicns for the stresses 
and heat fl;ixes eq.3: KIl' in crder of magnitude, compared with unity as Kn-0. This estimate 
defines the dor;aincfappiicatilit;.cftheprinclple of mtterial frame-indifference in its uslal 
treatment in the case cf i. -;as. 
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